Limited accuracy of dose calculation for large fields at deep depths using the BrainSCAN v5.21 treatment‐planning system
نویسندگان
چکیده
The Varian 120 multileaf collimator (MLC) has a leaf thickness of 5 mm projected at the isocenter plane and can deliver a radiation beam of large field size (up to 30 cm) to be used in intensity-modulated radiotherapy (IMRT). Often the dose must be delivered to depths greater than 20 cm. Therefore, during the commissioning of the BrainSCAN v5.21 or any radiation treatment-planning (RTP) systems, extensive testing of dose and monitor unit calculations must encompass the field sizes (1 cm to 30 cm) and the prescription depths (1 cm to 20 cm). Accordingly, the central-axis percent depth doses (PDDs) and off-axis percentage profiles must be measured at several depths for various field sizes. The data for this study were acquired with a 6-MV X-ray beam from a Varian 2100EX LINAC with a water phantom at a source-to-surface distance (SSD) of 100 cm. These measurements were also used to generate a photon beam module, based on a photon pencil beam dose-calculation algorithm with a fast-Fourier transform method. To commission the photon beam module used in our BrainSCAN RTP system, we performed a quantitative comparison of measured and calculated central-axis depth doses and off-axis profiles. Utilizing the principles of dose difference and distance-to-agreement introduced by Van Dyk et al. [Commissioning and quality assurance of treatment planning computers. Int J Radiat Oncol Biol Phys. 1993; 26:261-273], agreements between calculated and measured doses are <2% and <2 mm for the regions of low- and high-dose gradients, respectively. However, large errors (up to approximately 5% and approximately 7% for 20-cm and 30-cm fields, respectively, at the depth 20 cm) were observed for monitor unit calculations. For a given field size, the disagreement increased with the depth. Similarly, for a given depth the disagreement also increase with the field size. These large systematic errors were caused by using the tissue maximum ratio (TMR) in BrainSCAN v5.21 without considering increased field size as depth increased. These errors have been reported to BrainLAB.
منابع مشابه
Assessment of Dose Calculation Accuracy of TiGRT Treatment Planning System for Physical Wedged fields in Radiotherapy
Introduction Wedge modifiers are commonly applied in external beam radiotherapy to change the dose distribution corresponding to the body contour and to obtain a uniform dose distribution within the target volume. Since the radiation dose delivered to the target must be within ±5% of the prescribed dose, accurate dose calculation by a treatment planning system (TPS) is important. The objective ...
متن کاملAbsorbed Dose Calculation In Irregular Blocked Radiation Fields: Evaluation of Clarkson’s Sector Integration Method for Radiation Fields Commonly Used in Conventional Radiotherapy
Introduction: Irregular/blocked fields are routinely used in radiotherapy. The doses of these fields are usually calculated by means of equivalent square method that is inherently prone to uncertainty. On the other hand, Clarkson’s sector integration method is a dose calculation method which offers far better accuracy in dose calculation of irregular fields. The Scatter Air Ratio (SAR) of an in...
متن کاملCalculation of absorbed dose in lung tissue equivalent and compared it with prediction of a treatment planning system using Collapsed Cone Convolution algorithm
External radiotherapy is used for treatment of various types of cancers. Due to the impossibility of measuring the absorbed dose delivered to different organs during irradiation, treatment planning systems (TPSs) have been utilized for calculation of absorbed dose before a radiotherapy procedure. Thus, the accuracy and precession of the TPS is essential.The aim of this study is investigation of...
متن کاملDosimetric evaluation of a treatment planning system using pencil beam convolution algorithm for enhanced dynamic wedges with symmetric and asymmetric fields
Background: The dosimetric performance of Eclipse 6.5 three dimensional treatment planning system (3DTPS) is evaluated by comparing the calculated and measured dose in two dimensions following the guide lines of American Association for Physicists in Medicine Task Group 53. Materials and Methods: The calculations were performed by the 3DTPS for symmetric as well as asymmetric fields for standar...
متن کاملDose calculations accuracy of TiGRT treatment planning system for small IMRT beamlets in heterogeneous lung phantom
Background: Accurate dose calculations in small beamlets and lung material have been a great challenge for most of treatment planning systems (TPS). In the current study, the dose calculation accuracy of TiGRT TPS was evaluated for small beamlets in water and lung phantom by comparison to Monte Carlo (MC) calculations. Materials and Methods: The head of Siemens Oncor-impression linac...
متن کامل